Linear sequences have a constant difference. Non-linear sequences do not.

Position: the place in the sequence

Term: the number or variable (the number of circles in each image).
In a table:

Position	1	2	3
Term	2	4	8

What comes next?

1. $2,5,8 \ldots$
2. $M, T, W, T .$.
3. $1,2,4,7 \ldots$
4. $2,4,8,16$..

Substitution:
If $a=3$ and $b=4$ Calculate: 3a $2 b+a$ $3 b+2$

Equality:
$2+4=3+3=6=12-6$ All of the calculations above are equal to 6 but shown in a different way. Can you find other expressions equal to 6?

Commutative:
Function machines

Means the operation can be done in any order.

+ and x are commutative To find the input from the output you use the inverse

Keywords

Top tip: Commutative a^{2} and a are not like terms

Substitute Expression Evaluate Equality Equation Equals Solution Solve Term Like Coefficient

Question 1: Expand the following brackets
(a) $5(y+3)$
(b) $4(a+2)$
(c) $8(w+10)$
(d) $3(x-7)$
(e) $9(s-1)$
(f) $2(8-t)$
(g) $7(4+h)$
(h) $10(a+2 b+3 c)$
(i) $4(3 y+2)$
(j) $5(2 p-1)$
(k) $3(7 a+2)$
(l) $9(2 x-5)$
(m) $5(4+3 \mathrm{t})$
(n) $7(9-2 c)$
(o) $8(3 w+1)$
(p) $9(1-4 p)$
(q) $11(2 \mathrm{k}-5)$
(r) $20(6 a+5 c)$
(s) $3(15 w-7)$
(t) 3(9-2a)

Question 2: Expand the following brackets
(a) $-2(w+5)$
(b) $-3(c+7)$
(c) $-8(c+7)$
(d) $-10(y-2)$
(e) $-7(g-3)$
(f) $-4(2 w+3)$
(g) $-9(3 w-5)$
(h) $-9(5 x-1)$
(i) $-5(6-c)$
(j) $-6(4+3 m)$
(k) $-2(1+9 \mathrm{c})$
(l) $-5(8 a-7 w)$

Question 3: Expand the following brackets
(a) $a(c+2)$
(b) $c(d-3)$
(c) $\mathrm{a}(\mathrm{b}+\mathrm{c})$
(d) $w(8-y)$
(e) $c(5+a)$
(f) $w(a-9)$
(g) $y(s+t)$
(h) $2 \mathrm{a}(\mathrm{c}-3$)
(i) $5 \mathrm{x}(\mathrm{y}+8)$
(j) $3 \mathrm{a}(2 \mathrm{c}+9)$
(k) $6 \mathrm{~g}(2 \mathrm{c}-1)$
(l) $9 \mathrm{k}(2+\mathrm{d})$
(m) $5(2 f+9 w)$
(n) $3 y(5 p+2)$
(o) $2 \mathrm{~s}(\mathrm{t}+1)$
(p) $-4 a(8 x-3)$

Question 1: Factorise the following expressions
(a) $4 x+6$
(b) $15 x+20$
(c) $9 y-12$
(d) $5 x+15$
(e) $6 x-3$
(f) $4 x+8$
(g) $5 y-25$
(h) $8 w+24$
(i) $10 y+15$
(j) $14 w+21$
(k) $20 y-30$
(l) $27 x+18$
(m) $6-4 x$
(n) $9+12 y$
(o) $45+60 \mathrm{x}$
(p) $16 y-32$
(q) $22 a+55$
(r) $100-40 y$
(s) $6 x+9 y$
(t) $4 \mathrm{w}-2 \mathrm{a}$
(u) $25 y-35 z$
(v) $8 x^{2}+20$
(w) $30 y^{3}-15$
(x) $42 y+28 x-56 c$

Question 2: Factorise the following expressions
(a) $x^{2}+7 x$
(b) $x^{2}-3 x$
(c) $y^{2}+y$
(d) $w^{2}+9 w$
(e) $x^{2}-7 x$
(f) $4 w^{2}+10 w$
(g) $6 x^{2}-8 x$
(h) $9 y^{2}-6 y$
(i) $10 c+c^{2}$
(j) $5 \mathrm{~g}-\mathrm{g}^{2}$
(k) $14 x^{2}+35 x$
(1) $40 x^{2}-50 x$
(m) $12 x^{2}+18 x$
(n) $24 x^{2}-18 x$
(o) $45 y^{2}+60 y$
(p) $7 w^{2}+2 w$

Question 1: Describe the rule for each sequence below and find the next three terms
(a) $3,5,7,9, \ldots$
(b) $5,10,15,20, \ldots$
(c) $1,4,7,10, \ldots$
(d) $20,19,18,17, \ldots$
(e) $5,10,20,40, \ldots$
(f) $10,14,18,22, \ldots$
(g) $1,6,11,16, \ldots$
(h) $2,4,8,16, \ldots$
(i) $100,80,60,40, \ldots$
(j) $5,12,19,26, \ldots$
(k) $1,10,100,1000, \ldots$
(l) $64,32,16,8, \ldots$
(m) $55,66,77,88, \ldots$
(n) $32,41,50,59, \ldots$
(o) $15,9,3,-3, \ldots$
(p) $2,2.5,3,3.5, \ldots$
(q) $8,22,36,50, \ldots$
(r) $1,3,9,27, \ldots$

x	1	3	10	12	4	x							x						
2																			
5																			
3																			
6																			
7																			
	fillin	out		ultipl	icat	grid		n	make	som	e of y	your ow	u u	usin	g the	e num	mbers	rs 1 t	o 12
x						x							x						

